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1t may therefore be concluded that there are good
reasons, theoretical as well as practical, why the
Fourier method should be used in accurate crystal-
structure determinations.

This work has been done as part of a programme of
investigation of the structures of organic molecules by
X-ray methods. I am grateful to the Department of
Scientific and Industrial Research for financial aid, and
to Prof. Sir Lawrence Bragg and Dr W. H. Taylor for
the facilities they have provided and the interest they
have shown.
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Vibration Amplitudes of Atoms in Cubic Crystals

By KATHLEEN LONSDALE

University College, London, W.C. 1, England

(Recetved 20 February 1948)

Root-mean square amplitudes of atomic vibration are given for twenty elements and twenty-four
compounds crystallizing in the cubic system. The spatial distribution of atomic displacements due
to thermal vibration is calculated from the elastic constants of nineteen cubic crystals, and attention
is drawn to the relationships existing between the amplitudes of pure longitudinal and transverse
waves travelling along the cube edges, face diagonals and cube diagonals, and the structures of thesc

crystals.

From the data given, the intensity of diffuse scattering power could be plotted in reciprocal
space, for comparison with experimental data from monochromatic Laue photographs.

1t is possible to calculate a root-mean square amplitude
of thermal vibration of atoms in cubic crystals if the
Debye characteristic temperature is known. But the
atomsare not just simple-harmonic oscillators, although
their movements are resolvable into a series of har-
monic vibrations. The object of the present paper is in
§1 to give the root-mean square amplitudes and in
§ 2 to investigate the spatial distribution of ampli-
tudes in these component vibrations, and to consider
what relation, if any, exists between the amplitudes of
waves travelling in certain principal directions and the
crystal structure.

1. Root-mean square amplitude of vibration

The Debye-Waller formula, I,= le~2¥, which was
confirmed by early experimenters, applies to cubic
crystals composed of one kind of atom only, at tem-
peratures not too near to the melting-point. It ex-
presses the reduction of Bragg scattering of X-rays by
crystals with increasing temperature, in terms of the
mean square displacement of an atom from the average
position which it occupies in the crystal. In this ex-
pression M is given by

8m2sin? - -
= STEN

322 (1)

M

M may, however, also be expressed in terms of ©, the
Debye characteristic temperature of specific heat theory

_ OR® sin?0 [g(r) 1|

Tmko AT | o Tap

(2)
where A, k are the Planck and Boltzmann constants, m
the mass of the atom in grams, ¢ the Bragg angle, A the
wave-length of X-rays, #=0 T, where T is the absolute
temperature, and ¢(x) is the Debyve function of

1 {‘" &g

xlgef—1

(which is tabulated, for instance, in the Internationale
Tabellen zur Bestimmung von Kristallstrukturen (1935),
2, p. 574). The term } allows for the existence of zero-
point energy.

Equating (1) and (2), we find that

o O (B 1) 436X 1071 b)) 1)

om0« T3S a0 T2 tap

where 4 is the atomic weight in terms of 150, the values
of universal constants used being those given by Birge
(1941).

Table 1 gives the root-mean square amplitudes at
293° K. calculated from equation (3) for a number of
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elements crystallizing in the cubic system, using the
values of @ given by Seitz (1940).

Using the same values of ®, one finds that the root-
mean square amplitudes of thermal vibration are
reduced to something over one-half the above values
at liquid-air temperatures. Actually the characteristic
temperature usually increases slightly with lowering
of temperature (Blackman, 19354, b; Owen & Williams,
1947), but the effect of this is small compared with
other uncertainties involved in the calculations. A
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In the case of crystals composed of more than one
kind of atom, a different value of M applies to each
atom; but experiment has shown that the differences in
vibration amplitude are not large, in general, even when
the atomic weights of the different kinds of atoms are
very different. Waller & James (1927) gave values of
J(?) for Na* and CI” in rock-salt, based on measure-
ments of the intensity of reflexion at different tem-
peratures from planes in which the Na and Cl atoms
scatter in the same or opposite phases respectively.

Table 1. Root-mean square amplitudes of atomic vibration at 293° K. for elements
crystallizing in the cubic system

Element A ®
Pb 207-2 88° K.
Ca 40-1 230
Sr 87-6 170
Al 27-0 390
Ag 107-9 215
Au 197-2 170
Cu 63-6 315
Pd 106-7 275
Pt 195-2 225
Ir 193-1 285
K 391 100
Na 23-0 150
a-Fe 55-9 420
Ta 180-9 245
Cr 52:0 485
Mo 96-0 380
w 183-9 310
C (diamond) 12-0 2340

) 72-6 290
Sn 118-7 260

direct experimental check on the above values by
X-ray measurements has been made only in the case
of Al, Au and Cu. James, Brindley & Wood (1929)
found for Al at 290° K., /(u2)=0-171 A. and at
86° K., 4/(u2)=0-111 A., which would correspond to
@90 =409-5° K. and Oggo=415-5° K. from formula (3).
Owen & Williams (1947), by intensity measurements at
from 300 to 900° K., obtained room-temperature
(293° K.) values of @ as follows:

0,,=395°K., 0,,=175°K., 0.,=314°K,,

agreeing well with the values given by Seitz, which
were derived from specific heat data.

u? (u?) Structure type
0-080 A.2 0-28 A. Al (fe.c.)
0-061 0-25 s
0-051 0-23 4
0-033 0-18 ’e
0-026 0-16 '
0-023 0-15 -
0-021 0-145 ”
0-016 0-13 -
0-013 0-115 .
0-008 0-09 .“
0-328 0-57 A2 (b.c.c.)
0-249 0:50 »
0-014 0-12 ’e
0-012 0-11 'y
0-011 0-105 ’e
0-010 0-10 .
0-0075 0-08; .
0-0004 0-02 A4 (diamond)
0-021 0-145 ',
0-016 0-13

’

Wa-astjerna (1945) used a different experimental
method for a number of alkali halides. He measured
the atom-secattering factors of Na*, F~, CI-, Br—, I,
K, etc., in the various salts and compared the curves
he obtained with the theoretical values given by James
& Brindley (1931), thus deducing M for each atom from
the relation f,=f,e~#, and hence ,/(u?). In this way he
found a small difference in 3 even for K* and Cl™ in
KCl, a difference which had been supposed by James
& Brindley (1928) not to exist; James & Brindley
obtained ./(u?) for KCl at two different temperatures,
but treated the crystal as if it were a simple cubic
structure containing one kind of atom only. The col-
lected experimental results are given in Table 2.

Table 2. Root-mean square amplitudes of atomic vibration experimentally determined for alkali halides

James &
Wasastjerna Waller & James Brindley
r A Al (s A ™ r A ™
Temp.  J(ul) J(ug) 8 Temp.  (ul) J(uf) §  Temp.  J(u?
Compound °K. A. A. A. °K. A. A. A. ° K. A.
NaF 293 Nat 0-17 F~ 0195 0-183 —_ — — — — —_—
86 Na® 0-152 ClI™ 0-133 0-141 — —
NaCl 293 Na'* 0-245 CI™ 0-235 0-239 290 Na* 0-242 CI™ 0-217 0-227 —_ —
500 Na* 0-315 Cl™ 0-283 0-296 — —
KCl 203 K* 027 CI" 026 0265 — — — — { I v
KBr 293 K* 0-28 Br™ 0:27 0-273 — —_— — — — —
KI 293 K* 0-32 I 0-30 0-305 — — — — e _
RbCl 293 Rb* 0:26 Cl™ 0-26 0-26 —_ — — - — —_
CsI 293 — — 0-33 — —_— — — — —_
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In this table the ‘observed amplitude’ § is computed
from x/{(maAu(f-i-mb»ug)/(ma+mb)}, and it will be seen
that the maximum differences between & and /(u2)
or \/(u,f) are of the order of 79,. This being so, it scems
justifiable to use equation (3) for the calculation of

values of \/(u?) for cubic compounds for which @ is

known, on the assumption that they are composed of

only one kind of atom, of atomic weight
A=(me+my+...+m,)/n.

The errors introduced in this way are probably less than
those involved in uncertainty in the values of ®. Seitz
gives a few values of © for compounds, and some further
values can be deduced from available specific heat
data, as given in the Landolt- Bornstein or the Inter-
national Critical Tables. (A good outline of methods
is given by Roberts (1940).) Wasastjerna (1935, 1933)
has calculated the values of \/(«?) for a number of alkali
halides from the potential of repulsion in the crystalline
state, but his subsequent experimental investigation
(1945) of certain of these compounds indicated that the
calculated root-mean square amplitudes were all about
139, too low. His corrected figures are included in
Table 3, together with the corresponding deduced
characteristic temperatures (inserted in brackets). All
data refer to a temperature of 293° K.

ATOMS IN CUBLIC CRYSTALS

able. It should not be difficult, and would be verv
interesting, to measure ,/(x?) for NaClO; by X-rav
methods, and to see whether the value given in Table 3
is of the correct order of magnitude. Two values of ©
are given for zincblende because the experimental data
are conflicting. (The values of specific heats given in the
International Critical T'ables appear to be in disagree-
ment with both sources quoted above and would give
a much lower value of @ altogether; on the other hand,
Forsterling (1921) deduces from the elastic constants of
Voigt (1918) a value which is higher than either of
those given here.) Here again a measurement of '(u?)
by X-ray methods would be valuable, as also in the case
of AgC'l, where the value ot © given by Seitz is incon-
sistent with the specific heat data of Clusius & Harteck
(1928).

2. Spatial distribution of atomic displacements
It has long been known that the thermal vibrations are
not really isotropic, even in monatomic cubic crystals
(Born & v. Kédrmédn, 1912). A measurement of the
amplitudes of waves of different polarizations having
different directions of propagation may be made by
studying the intensity of diffuse X-ray scattering in the
neighbourhood of the Bragg reflexions (Laval, 1935,
1939). In the case of a harmonic vibration in which the

Table 3. Root-mmean square amplitudes of atomic vibration at 293 K. calculated and observed
Sor various cubic crystals

¢ w?
Compound 4 v K. A
Nak 2100 439 0-034
Na(l 29-23 281 0-057
NaBr 51-46 (200) 0-063
Nal 74:97 (151) 0073
KF 29-05 (321) 0-045
KCt 37-28 227 0-0638
KBr 59-51 177 0-069,
KI 83-01 (132) 0-003
RbF 52-22 (238) 0-045,
RbC1 60-45 (179) 0-067,
RbBr 82-68 (140) 0-084
Rbl 106-2 (110) 0-100;
sk 759 (184) 0-050
(sl 129-9 (95) 0-109
AgCl 71-67 130 0092
Agl 117-4 120 0-076
LiH 3975 515 0-058,
LiD 4475 611 0-085;
Pbs 119-7 ~ 190 0:030
ZnS 48.72 (265 0-038;
(zincblende) o= 1230 0-050;
FeS, 39-99 645 0-013
('aF, 26-03 174 0-014,
NaClo, 21-29 ~ 850 0-010

\ (%)

Al Remarks and references
018, ) from Debye’s specitic heat function
0-24 Neitz, from specific heats
0-25 Wasastjerna, from potential of repulsion
027, Do.

0-21 Do.

026 Seitz, from specific heats

0-26, Do. )

0-30, Wasastjerna, observed «? by N-rays

021 Wasast]erna, from potential of repulsion

0-26 Wasastjerna. ohserved u? by NX-rays

029 Wasast]erna. fromn potential of repulsion

0-32 Do.

022, Do.

0-33 Do.

0-30, & from limit of 7% ¢, (Clusius & Harteck, 1928)
0-27, Do.

024 Ubbelohde (1936)

0-24 Do.

017, ¢ from limit of 1° C,

0-19, Clusius & Harteck (192%)

022, Giinther (1916)

0-11 Seitz, from specific heats

0-12 Do.

0-10 Approx. value of ¢ by analogy with orthorhombic

1t may be noted that an error of say 10 ¢, in the value
of ® would lead to an error in |/(u?) of about the same
magnitude but of opposite sign. The data for NaClO,
are given because of the analogy between its structure
and that of ZnS, and because of the practical interest
of both substances, but the value of ® given is question-

KC10; and with other Na and K compounds

atomic movements are normal to a given set of erystal
planes there is a resulting change of intensity of re-
flecting power which is, to a first approximation, pro-
portional to the mean-square amplitude of the oscil-
lation. This change in intensity causes a reduction of the
Bragg reflexion, but the energy reappears as diffuse
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scattering. Measurements of the change of Bragg re-
flexion give an integrated effect and do not distinguish
the different effects of different types of vibrations, but
measurements of diffuse scattering, if properly made
(with a narrow, parallel monochromatic beam and a
stationary crystal, for different orientations) make just
this distinction. Jahn (1942) has given a simple de-
rivation of the relative intensities of diffuse thermal
scattering in different directions around reciprocal
lattice points for a cubic crystal, in terms of the elastic
constants ¢,;, ¢;, and cyy; and good qualitative agree-
ment has been obtained experimentally for Na, Pb, W,
NaCl and KCl (Lonsdale & Smith, 1942; Lonsdale,
1942, 1943). That is to say, the shapes of the isodiffusion
surfaces in the neighbourhood of reciprocal lattice
points which are found experimentally are just those
given by the Jahn formula

T ‘};; {c+ ZLcge(c1y —Caa) (M* + 1)
+ (Cy1 + €12) (€11 = €12 — 2C44) MP07]
— 25 M Nmn(Cy5+ Caq) [C44+ (€11 — Cro— 2640) 1]}
+{e1163+ CaglCr FC12) (611 = Cr2— 2C44)
x (m?n?+ n¥? 4+ 12m?)
+ (c11+2¢12+ Cag) (€11 —C12— 2¢44)? PmPn?}. 4)

Here [ is the intensity of diffuse reflecting power at
a (small) distance 7 and in the direction [wvw] (having
direction cosines I, m, n) from the reciprocal-lattice
point kkl. The distance of this point from the origin of
reciprocal space is R in a direction defined by the
direction cosines L, M, N. (Le. l=u/J(u?+v2+w?),
etc.; L=h/\(h*+k2+12), etc.) AsJahn has shown, the
substitution of particular values of I, m,n, L, M, N can
simplify this formula considerably. In fact, along
particular directions it represents the effect of a pure
transverse or a pure longitudinal wave (with a frequency
directly proportional to r), having its amplitude normal
to a main crystal plane.
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For instance, if we consider the reciprocal lattice
point 001 and the direction [100] (L=M=0, N=1;
I=1, m=n=0), then expression (4) becomes

Here we are considering the effect of a pure transverse
wave whose direction of propagation is [100], whose
amplitude is normal to the set of planes (001), and whose
velocity in a crystal of density p is AJ(cas/p). Now the
mean-square displacement, &2, corresponding to waves
of this class, must be proportional to 1/cy, since
Ioc €2, at least to a first approximation, for waves of
relatively low frequency (small r-value).

For the reciprocal-lattice point 001 and the direction
[001], the expression (4) represents the effect of a pure
longitudinal wave, velocity +(cy/p), and of mean-
square displacement proportional to 1 /¢y, for low-
frequency waves.

If we use the following abbreviations

1 1 1 1

a=—, b=—, c= = )

‘n Caq C11+Cip+2C
1 1
= C1y 42610 +4C0

)
€11 C12

- ’
€11 —C12HCaq

then a, d and e are proportional to the mean-square
displacement £2 for pure longitudinal waves and b, ¢, f
are proportional to the mean-square displacement £2
for pure transverse waves. Jahn’s formula can be
applied to give relative values of the mean-square dis-
placement normal to the set of planes (Rkl) due to all
waves whose direction of propagation is [uvw]. Special
cases are given in Table 4.

If for any particular crystal the measured values of
€115 €12 and Cy4 are substituted in the above, the spatial
distribution of root-mean square amplitudes, /(£%), for
waves of different polarizations travelling in different
directions may be found for any given frequency

Table 4. Intensity of diffuse reflecting power; varying mean-square displacement.
(Special cases of Jahn's formula ; v constant)

[uvw] (hkl)

[100] L2a+ (M?+N?) b

[010] M?a+(N2+L?) b

[001] N2a+(L2+ M?) b

[110] (L+ M) d+(L—M)*c+N%

[101] (N+ L) d+(N—L) c+M?%»

[011] (M +N)2 d+(M—N)? c+ L2

(110} (L— M)? d+(L+M)? c+ N2

[101] (N—L)2d+ (N +L)2 c+ M2

[011] (M —N)*d+ (M +N)? c+ L2

[111] (L+M+N)? e+2(1—LM—MN-NL) f
[111] (=L+M+N)? e+2(1+ LM —MN+NL) f
[111] (L—M+N)2e+2(1+LM+MN—NL)f
[11](L+M—N)2e+2(1—LM+MN+NL) f

(001) (110) (210) (111) (112)
b Ha+b) 1(4a+b) Y(a+2b) A(a+5b)
b $a+b) 1(a+4b) 1(a+2b) 4(a+5b)
a b b 3(a+2b) 1(2a+b)
b 2d 1(9d +c¢) 1(b+4d) 3(2d + 2b)

c+d yb+c+d) l(dd+4c+b)  h(b+4d)  §(9d+c+D)

c+d Jb+c+d) (d+c+4b)  Ab+4d)  F(9d+c+b)
b 2 1(d + 9c¢) 3(b+4c) 1(2¢ + 2b)
c+d sb+c+d) 3@dd+dc+b)  3(b+4c)  H(d+9c+Db)
c+d jb+c+d) Ld4c+db)  A(b+de)  Hd+9c+b)
c+2f 2e+f 1(9e+ 6f) 3e 3(8e+f)
e+2f 2e+f 1(9e + 6f) e +8f) 3f
e+2f 3f $(e+14f) 1(e+8f) 3(2e+7f)
e+2f 3f 1(e+14f) i(e+8f) $(2e+7f)

Sum: XL2%(a+4b +4c+4d+4c+8f)=a+4(b+0+d+e)+8f

ACI
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(r constant); but it will be seen that although this dis-
tribution varies considerably from one reciprocal point
to another, and has a wide range in respect of any one
lattice point (variations of as much as 14 to 1 exist, for
imstance, in the Na crystal), yet the value of X&2
summed over all the wave directions given, is constant
for all reciprocal-lattice points, as it should be for a
cubic erystal. Inthe case of the thirteen wave directions
considered in Table 4, Xf2oca+4(b+c+d+e)+8f. A

VIBRATION AMPLITUDES

OF ATOMS IN CUBIC CRYSTALS

to 1/v (i.e. to the square roots of the values given in
Table 4); but the same general distribution law as that
givenin Table 4 appears to hold, according to the X-ray
experimental ecvidence, for a considerable distance
around each reciprocal lattice point (that is, for a con-
siderable range of frequencies).

The amount of experimental data recorded for the
elastic constants of cubic crystals is limited. Table 5
gives the room temperature values available.

Table 5. Elastic constants of cubic crystals

(Unit: 10" dynes cin:?)

Substance cyy [ Cyq
Pb 477 4:03 1-44
Al 10-8 G2 28
Ag 120 8-97 4-36
Au 19-4 16:6 4-0
Cu 170 12:3 753
Na 0-52 0-40 0-41
a-Fe 23-7 14-1 11-6
W 51-3 20-6 15-3
(' (diamond) 95-0 39 43
NaCl 4-97 1-27 1-27
NaBr 3-30 1-31 1-33
KCl 3-70 081 0-79
KBr 3-33 0-5%8 0-62
KI 2:67 0-43 0-42
PbS 3-69 4-01 4-42
ZnS 10-79 7-22 4-12
FoS, 36-3 e 10-5
Cak, 16-44 3-02 347
NaCl0, (1) 619 —2:09 1-20

2) 509 1-55 1-18
(3) 4:90 1-:39 1-17

different sum would, of course, be obtained if other
directions were also considered, but it would be con-
stant for all reciprocal-lattice points provided that all
crystallographically equivalent directions were in-
cluded in the summation. This result follows from the
fact that the mean-square amplitude of all vibrations
taken together is the same in any direction in the
crystal, so that M may be calculated from intensity
measurements made on any set of planes in a mon-
atomic cubic crystal, in spite of the fact that the
distribution of values of £2 going to make up u%(=1u?)
varies with direction. Jahn’s formula, as has been
mentioned previously, gives only relative values of £2
for waves of low frequency (that is, frequencies which
satisfy the relation hv<kT). For such waves £2~ kT,
and since v may vary from zero to a limiting value
(Born & v. Karman, 1912; Kellermann, 1940, 1941;
lona, 1941), it follows that £2 may, in fact, be very large
for the low-frequency waves, a fact which explains the
comparatively high intensity of diffuse scattering necar
to the Bragg reflexion positions at least in certain
directions. For high-frequency waves (r large)

:_': h (’ﬂ‘*‘l)
2v\ef—1)°

Segl

where f=hv/kT, and in the region of the maxima of the
frequency spectrum £2 will be more nearly proportional

Remarks and references
Goens (corrected) (1936)
Schmid & Boas (1935)
Do.
Do.
Do.
Extrapolated from Quimby & Siegel (1038)
Schmid & Boas (1935)
Do.
Bhagavantam & Suryanarayan (1944)
Bhagavantam (1946)
Schmid & Boas (1935)
Do.
Do.
Do.
Bhagavantam (1946)
Bhagavantam & Suryanarayan (1944)
Doraiswami (1947)
Bhagavantam (1946)
Voigt (1910)
Bhagavantam & Suryanarayan (1847)
Mason (1946)

Of all these substances only tungsten is elastically
isotropic (¢;; —¢y,=2¢,,), but even for this crystal the
values of £2 for different types of vibration vary over
a range of more than three to one. The mean-square
amplitudes of the longitudinal waves, in any direction
of propagation, are invariably small relative to those
of transverse waves of the same frequency. It is clearly
not possible to give absolute values of corresponding
atomic displacements, \/(E‘Z), without specifying the
range of frequency covered and without knowing the
distribution in the frequency spectrum, but in order to
relate the values of the individual wave amplitudes to
the mean-square amplitude of vibration u? for the
different crystals, relative values of ,/(£2) are given in
terms of (252) = 13172, summing over the thirteen wave
directions of Table 4. 1t must be clearly understood,
however, that these values have no absolute signifi-
cance, though they have a relative significance not
only for each crystal but from one crystal to another.
So also have the values of the intensity of diffuse
scattering I, which are proportional to £2 at any given »
value. Table 6 gives a complete range of values for a
few typical crystals, together with ,/(u?) values and
Ist, 2nd and 3rd nearest neighbour distances; while
Table 7 gives relative values of /(£2) for the pure longi-
tudinal and pure transverse waves for all crystals listed
in Table 5.
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Table 6. Relative values of intensity of diffuse scattering and of root mean-square atomic displacements
(Displacements in true A. using the relation 1 kX.=1-00202 A.)
Pb (A1 type): \/(ﬁz)=0-28 A.; Pby—Pb,=3-50; Pb,—Pb,=4-95; Pb,—Pb;=6-06 A.
18 V@

-

J

(001)  (110)  (210) (111)  (112) “001)  (110)  (210) (111)  (112)
(100 53 34, 23, 40,  47x10- 023 018, 015 020 022
(010 53 34, 45, 40, 47 023 018, 021 020 022
001 16 53 53 40, 28 013 023 028 020 017
110 53 13 35 2.6 40 023 01l 019 016 020
SHINE I A O
[110] 53 238 205, 176, 114 023 049 046, 042 034
[10I] 126 g9 111 176, 188, 035 030 033 042 043,
oll] 126 8:9 37 176, 188, 035, 030 019 042 043,
111 7, 45 51 12, 2:3 028 021 022 Oll 015
1 77 45 103, 99 88 028 051  0sz 031 0
. 5 . o . . . 35 ‘ .
111] 77, 45 103, 99 88 028 021 032  03l. 030
W (A2 type): (1) =0-086 A.; Wo-W, =2-T4; W-W,=3-165; W~W,=4-48 A.
I~g? J(E?)
A —A
r N r N
(001)  (110)  (210) (111)  (112) (001)  (110)  (210)  (111)  (112)
100 1.0 06, 04, 07,  0:9x10- 010 008 007 008  0-09,
010] 10 06, 08 07, 09 010 008 009 008, 0-09,
001] 03 1-0 1-0 07, 05 005 010 010 008,  0-07
[110] 10 03 03, 05 07, 0100 005, 006 007  0-08,
[101] 06, 08 0-7 05 0-4, 008 009 008 007 007
011 06, 08 0-9 05 0-4, 008 009 009, 007  0-07
hot]l o6, 08 o7 1o o9 008 009 008 010 009
[0l1] 06, 08 09 1-0 09 008 009 009, 010  0:09,
(111 07, 05 06 03 04 008, 007 008 005, 006,
(1111 07, 05 06 09 1-0 008, 007 008 009, 010
1] o7, 10 09 09 0-8 008, 010 009, 009,  0-09
1] o7, 10 0-9 09 08 008, 010 009, 009,  0-09
K1 (B1 type): /(u?)=0-30; A.; K,;~I,=853; K-K; =500; K,-I, =612 A.
I~g v(ED)
—A N I 4 Al
001)  (110)  (210)  (111)  (112) (001)  (110)  (210)  (111) (112
oo om e rmoem o em
[001] 27, 176 175 126 7-6, 016, 042 042 035 027
Hotl ‘53, 11 16 s3  ow 055, 03 057, 029 035
%011% 51, 118 150 83 62, 0220 033, 039 029 025
(110] 175 65, 62 102 138, 042" 025, 025 032 037
(10l] 51, 113 76 102 81, 022 033 027, 032 028,
[oI1] sl 113 150 102 81, 022, 033, 039 032 028,
(1] 69 56 58, 42 17 026 023, 024 020, 022
(i11] 69 56 58, 18 83 026 023, 024 028 029
(11} 69 8:3 80 7-8 74 026 029 028 028 027
[111] 69 8-3 8:0 7.8 74 026 029 028 028 027

ZnS (B2 type): J(uf)=0-195 A.; Zn-S,=2-35; Zn,—Zn, = 3-84; Zn,—S, =450 A.
(The following values are referred to the Clusius-Harteck specific heat data.)

I~E E)
—- N r - Al
(0ol1) (110) (210) (111) (112) (001) (110) (210) (111) (112)
100} 35 2.4 175 247, 3-1 x10-* 018, 015, 013 016, 017,
[010] 35 2-4 3-05 2-75 3-1 0-18; 0-154 0-17, 016, 0-17,
001] 13 35 35 2.7, 2:0, 011, 018, 018, 016,  0-14,
110] 35 1-1 1-8 1-9 2.7 0-18; 0-10; 0-13, 0-14 0:16;
101} 455 4-0 4-3; 1-9 21 0-214 0-20 0-21 0-14 0-14,
011] 45, 4.0 3.7 149 2.1 021, 020 019 014 014,
110] 3:5 8-05 7.3, 65 5:0 0-18, 028, 027 025,  0-22;
101] 45, 4-0 4-3; 65 6-7 0-214 0-20 0-21 0-25, 0-26
011] 4:5 4-0 37 6-5 6:7 0-21, 0-20 0-19 0-25; 0-26
[111] 41 25 28, 1-0 1-5, 020 016 017 010  0-12
[111] 4-1 2-5, 2-8, 51 56 0-20 0-16 0-17 0-22,4 0-23;
[111] 4-1 56 53 51 , 46 0-20 0-23, 0-23 0-22, 0-21,
[111] 41 56 5-3 5.1 46 0-20 0-23,  0-23 022, 02l,

10-2
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Table 6 (cont.)
FeS, (C2 type): (1?) =011 At 8§g-8,=2-105 8y - Fe,=2-206; 8,-8,=3-10 A.
I~g® V(E)

—_— S S - .
(ol)  (110)  (210) (A1) (112) (01)  (110)  (210)  (111)  (112)
[100] 2.0 1-3 0-8 15 17, %10 ¢ 14 011, 009 012 013
[010] 2-0 1-3 1-7 15 1-7, 0-14 0-11, 0-13 0-12 0-13
[001] 0-5, 2-0 2-0 1-5 1-0 0-07, 0-14 0-14 012 0-10
[110] 2-0 0-8 0-8 1-2 1-6 014 0-09 0-09 011 012,
[101] 09 1-4, 1-1 1.2 1-0 0-00, 0-12 0-10, 011 0-10
(011] 09 14, 1-8 12 1-0 009, 012 0-13, 011 0-10
(110] 2-0 1-0 1-0 1-3, 1-7 0-14 0-10 (-10 011, 0-13
(101) 0-9 14, 11 1-3, 11, 009, 012 010, 011, 010,
(011] 09 14, 1-8 13, 11, 009, 012 013, 011, 010,
[111] 1-1 1-0 1-Ug 0-9 0-9;, 010, 0-10 0-10 0-09, 0-09,
(111] 1-1 1-0 1-04 1-2 1-2 0-104 0-10 0-10 0-11 0-11
(111) 11 12 1-2 1-2 11, 0-10, 011 011 11 010,
(111] 111 1-2 1-2 1-2 11, 0-10. 011 011 011 010,

Table 7. Relative root mean-square atomic displacements corresponding to pure longitudinal
and transverse waves.

(Lattice constants and displacements are given in true A.; Ja ete. are given in terms of a+4(b+c+d+e)+8f= 1322.)

Longitudinal '(£?) Transverse 4 (£2)

Structure Lattice - e s A
type constant L (ud) Ja J(2d) J(3e) R A (20) L (3)
Pb Al 4-949 0-28 013 0-11 0-11 0-23 0-49 0-33
Al Al 4-049 018 010 0-10 0-10 0-20 022 021,
Ag Al 1-086 0-16 0-09 0-08 0-07, 014, 0-25 019,
Au Al 1078 013 0-06, 0-06 0-06 0-14 023, 0-18;
Cu Al 3-615 0-14; 0-08, 0-07, 0-07 0-12, 0-23 17,
Na A2 4290 0-50 0-31 0-24 022, 0-35 0-92 053,
a-Fe A2 2-865 0115 0-07, 0-07 0-06, 0-11 0-17 0-14
W Az 3:165 008, 0-05, 0-05; 0-05, 0-10 0-10 -10
C (diamond) A4 3567 0-02 "0l 0-01, 0-01, 0-02 002 002
NaCl Bl 3-639 0-24 U-14, 0-15, 0-16 0-29 0-24 0-25
NaBr Bl 5971 0-25 017 016 0-18; 0-27 0-31 0-29;
KCl Bl 6-290 0-26 015, 0-17 017, 0-33; 024, (-26,
KBr B1 6-599 026, 0-15 0-17 018 0-35 023 0-26
KI B1 7-066 0-30 016, 0-19, 0204 0-42 0-25 0249
PbS B1 598 017, 012 0-11 0-10, 0-17 0-23; (0-20
Zn$ B3 5-44 0-19, 011, 0-10;4 0-10 0-18, 0-28, 023,
FeS, 2 5424 0-11 0-07, 0-09 0-09, 0-14 0-10 011
CaF, Cl 547 012 0-07 0-07, 0-08 015, 0-11, 0-12,
- ) - . (1) 0-06 0-08 0-09 0-13 0-07 0-08
XNaClO, G3 6:58, 0100y 006 0-06, 0-06. 0120 0-10 011

In Table 7, \/a represents the effect of a pure longi-
tudinal wave travelling along a cube edge, ,/(2d) that
of one along a face diagonal, \/(3¢) that of one along a
cube diagonal. In general there is little difference in the
relative amplitudes of these vibrations, although it
may be seen that for the metals (whether face-centred,
Al, or body-centred, A2) the largest amplitudes
(smallest velocities for a given frequency) are associated
with the cube edges, presumably because the atoms are
farthest apart along these directions. For the rock-salt
type of compounds (with the exception of NaBr and
PDbS) just the reverse conditions apply, and again the
slow, large amplitude wave is associated with the
direction of largest atomic separation, now along [111].
The same general rule applies to ZnS and FeS,.

For the doubly degenerate pure transverse waves,
/b, J/(2¢) and |/(3f) are again associated with the cube
edge, the face diagonal and the cube diagonal re-
spectively, as directions of propagation, the displace-
ments being in any two mutually perpendicular

directions at right angles to these directions. Here
there is a more distinct difference, in general, between
the different directions, and also between the behaviour
of the metals and that of the rock-salt type structures.
In the case of the metals, the slowest pure transverse
waves are those along the face diagonals (whetl:er the
structure is body-centred or face-centred), and these
therefore have the largest relative amplitudes. In the
case of Na in particular, the amplitudes of such waves
are very large indeed, and the existence of continuous
diffuse seattering streaks along the corresponding
diagonal directions in reciprocal space (see Plate 6)
shows that this is true even when the waves are of such
high frequency that they correspond to wave-lengths
comparable with the interatomic distances. The large
amplitudes of atomic vibration in sodium may well
explain the self-annealing effects observed as an in-
tensity hysteresis by Dawton (1937) during repeated
ceveles of heating and cooling. That similar data would
apply for Li is clear, not only from the similarity of their
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Sodium single erystal in thin glass tube. [110] axis vertical. Mono-
chromatized Cu Kz radiation (urea nitrate monochromator) at angle
0y +5° to plane (110). All streaks correspond to various [110]
directions. Room temperature. Exposure time 2 hr.

Sodium single crystal in thin glass tube. [100] axis vertical. Mono-
chromatized Cu Kz radiation at correct Bragg angle for 002 reflexion.
Streaks along [110] directions. The inner diffraction ring is due to the
glass tube. Room temperature. Exposure time 1 hr,
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atomic and crystal structure but from the similarity of
their diffuse scattering patterns. It is because of these
large dynamic displacements normal to the (110) planes
that Barrett (1947) was able, by suitable cold-working
at temperatures below —196° C., to cause a trans-
formation of Li from its usual body-centred cubic
structure to a face-centred structure.

For the rock-salt type of structure, however (again
with the exception of NaBr and PbS), the slowest
transverse waves are those along the cube edges. In
other words, it is difficult for ions of opposite sign to
vary their relative distance along their line of closest
approach, but relatively easy for them to vibrate about
this line. This leads to a streaking of diffuse scattering
along the cube directions in reciprocal space (other than
those which pass through the origin), which should be
particularly well marked in the case of KI. The ten-
dency to vibrate about the line of closest approach is
least in the case of like ions. For KI, indeed, such
transverse vibrations (wave propagation along face
diagonals) have amplitudes only a little bigger than
those of the longitudinal waves travelling in the same
direction. There is an interesting tendency for ZnS and
PbS to behave like the metals, whereas FeS,, CaF; and
NaClO, are more like the alkali halides in their elastic
behaviour. This is confirmed for NaClO; by the recent
paper of Garrido (1948) giving a qualitative account
of the diffuse scattering of that substance. A more
precise quantitative measurement of the diffuse scat-
tering should certainly be able to distinguish between
elastic data as diverse as those of Voigt and of Bhaga-
vantam & Suryanarayan, since the former would give
much more anisotropic effects; but the method would
be unlikely to distinguish between the latter’s data and
those of Mason (see Table 5).

This paper was begun during the author’s tenure of a
Special Research Fellowship of the U.S. Federal Health
Service held at the National Institute of Health,
Bethesda, Md., U.S.A.
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